您好!欢迎来到名表论坛--名表玩家的乐园   【登陆】【注册】 手机版   站内搜索  高级搜索
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12

搜索
广告AD:
查看: 14779|回复: 10

百达翡丽新游丝:spiromax

[复制链接]


483

主题

9450

帖子

5万

积分

老表迷

Rank: 2

积分
50650
中介积分:0
专业积分:0
差评积分:0
发表于 2006-2-19 06:54:00 | |阅读模式


200621961321194.jpg spiromax名字参考1949年专利摆轮“gyromax”而来,是继硅擒纵轮后又一项革命性发明。

与硅轮一样,由劳力士、swatch集团与一家科研机构合作开发。比当前的因瓦单层游丝、宝玑式双层游丝更薄更轻,更防磁防震,更加稳定,经过600天测试,符合传统日内瓦印记和天文台标准。

今年巴塞尔展会,pp将首度推出同时拥有硅擒纵轮、gyromax摆轮和spiromax游丝的新型产品。

  


6

主题

410

帖子

3689

积分

见习表迷

Rank: 1

积分
3689
中介积分:0
专业积分:0
差评积分:0
发表于 2006-2-19 07:53:00 |


!!!!!!请具体分析一下~~ 以便我门更好的学习! 不过看结构就知道做出来很难!!

  


24

主题

354

帖子

3616

积分

见习表迷

Rank: 1

积分
3616
中介积分:0
专业积分:0
差评积分:0
发表于 2006-2-19 09:25:00 |

听着很牛的样子
  


5

主题

698

帖子

4249

积分

见习表迷

Rank: 1

积分
4249
中介积分:0
专业积分:0
差评积分:0
发表于 2006-2-19 09:52:00 |

不知道用在表上走得怎么样.
  


69

主题

6157

帖子

3万

积分

老表迷

Rank: 2

积分
32531
中介积分:0
专业积分:0
差评积分:0
发表于 2006-2-19 10:38:00 |

Here is the press release of the New Patek Spiromax A year after the launch of the first Swiss lever escapement with a silicon escape wheel (patent application No. EP05006186), Patek Philippe can present a further fundamental innovation in horology: the Spiromax® balance spring made of a silicon-based material. It constitutes an epochal step forward in the constant quest for isochronism in mechanical wristwatches. On the occasion of Baselworld 2006, the Geneva workshops will showcase a watch with a Spiromax® balance spring in a second limited “Patek Philippe Advanced Research” edition. Isochronism is the key to every measurement of time based on any form of vibration – whether it originates from a pendulum, a quartz crystal, or a balance wheel. The greater the regularity of the vibration, the more accurate the rate of the movement. If the source of the vibration is perfect, it is called isochronous (isos is Greek for equal, khronos for time). The isochronism of the classic balance in portable mechanical timepieces has always been the greatest challenge for watchmakers and caliber engineers. The key factors that disrupt isochronism are · the asymmetry of the expansion and contraction phases (“breathing”) of the balance spring · changes of the elasticity of the spring in response to temperature changes, · the influence of magnetic fields · mechanical and thermal material changes at the two spring attachment points · the influence of centrifugal forces and gravity on the balance spring · inadequate balance-wheel poise · the play between the curb pins. Ever since the spiral spring emerged, countless attempts have been made to eliminate its anisochronism. The history of the so-called hairspring is characterized by four milestones: A brief history of the balance spring Ever since Christiaan Huygens was inspired by the Archimedes’ spiral to create a regulating organ for mechanical clocks in 1675, generations of watchmakers have tried to teach the delicate spring to contract and expand at a constant rate. Considerable progress was made in the course of the centuries as it became ever more filigreed and lighter. However, the two following steps are considered the truly epochal ones: In 1795 Abraham-Louis Breguet empirically developed the overcoiled spring that bears his name. Later, Edouard Phillips calculated the geometry of this inwardly bent terminal curve with great precision. In a balance with a spring that develops asymmetrically, non-axial forces occur at the jewel-and-pivot contact points. They disturb the oscillating system and cause anisochronism. By contrast, the overcoil allows the Breguet spring to expand and contract symmetrically (concentrically). The downside is that it requires three times the installation height of a flat spring. However, the thermal problem with spiral springs was not yet solved: Metal alloys tend to expand when heated, and their resilience deteriorates as well. The material becomes softer and the spring loses elasticity. Since the inertia of a balance wheel increases when it expands for thermal reasons and the spring becomes softer (less elastic), the frequency of oscillation changes and isochronism is lost. In 1897, Swiss physicist and Nobel laureate Charles Edouard Guillaume invented an iron-nickel alloy with a particularly small coefficient of thermal expansion; the new metal also exhibited greater elasticity at rising temperatures. He called it INVAR as in invariable. Invar alloys have since been used in numerous applications where the stability of material properties in fluctuating temperature environments is an asset. Today, Invar is still the alloy most frequently used for balance springs. Now, Patek Philippe’s Spiromax® spring is ushering in a new era that takes these developments into a new dimension with a revolutionary material technology and a totally new geometrical approach. A new milestone: the Spiromax® spring by Patek Philippe Spiromax® is a totally new type of balance spring made of a silicon-based material jointly developed with a research institute and other partners in the watchmaking industry within the scope of a confidentiality agreement. Accordingly, information on the new material will be released jointly by all partners in due course. The material itself does not solve the asymmetric development problem of a spiral spring. The distinctive features of the Spiromax® spring are the exclusive geometry of its terminal curve as well as the unique design of the attachment points at both ends of the spring. Patents have been applied for these Patek Philippe inventions. Unlike conventional springs, a Spiromax® spring cannot be terminated with a Phillips curve. Therefore, Patek Philippe’s research department sought an alternative approach and discovered an innovative terminal “curve” design that can be implemented inside the spring’s plane of oscillation. The “Patek Philippe terminal curve” exhibits a prominently thicker region at the outer end, forcing a concentric development upon the Spiromax® spring. This causes the expansion and contraction of the spring to be symmetric relative to its center over the entire plane of oscillation. And because the “Patek Philippe terminal curve” lies within this plane, the Spiromax® spring can be crafted three times thinner than a spring with a Philips or Breguet overcoil, thus facilitating the construction of ultra-thin movements. The Spiromax® spring exhibits further important design features. In the center, it has an integral balance staff collet, and the outer end has an integral stud attachment geometry which precisely defines the active length of the spring. Both attachment points are the subject of two further patents. In conventional springs, the inner end is attached to the collet by soldering, brazing, or clamping. This causes spring deformations at the attachment ends due to severe mechanical compression or thermal expansion, necessitating extra adjustment work. The balance staff attachment of the Spiromax® spring is a rigid triangular outer frame that functions as a holder for an inner triangle whose sides have been made bendable and elastic by deliberate material thinning. They act like a three-jaw chuck that automatically centers itself on and tightly grips the balance staff. The rigid frame of the balance staff collet assures the optimized alignment of the inside end of the spring. The specially shaped outer end of the Spiromax® spring engages with the corresponding cavity of the spring stud. This is a patented, proprietary design. Both the integral balance staff collet and the integral stud attachment end of the Spiromax® spring were developed in-house and patents have been applied for by Patek Philippe. With its paradigmatic Spiromax® spring, Patek Philippe has created an oscillating element that unites several decisive advantages. The active length of the Spiromax® spring does not need to be painstakingly adjusted for each individual movement. The Spiromax® spring vibrates with ideal concentricity even without an overcoil. It is designed to be isochronous regardless of the temperature, the orientation of the movement, or the presence of magnetic fields. Spiromax® springs: consistently identical quality As is the case with the silicon escape wheel, the Spiromax® spring is manufactured with the Deep Reactive Ion Etching (DRIE) process described in the annex. The material exhibits a contiguously homogeneous monocrystalline structure and can be machined to tolerances in the micrometer range. Accordingly, all Spiromax® springs are of consistent, extremely high quality, a fact reflected by the remarkable rate accuracy of movements equipped with them. The revolutionary Spiromax® spring asserts the innovative thrust at Patek Philippe The Spiromax® spring expresses the systematic innovation policy pursued by the manufacture in Geneva. With its strong commitment to research and development, Patek Philippe stands at the very forefront of horological exploration. At the same time, the company systematically leverages its know-how to preserve its independence and to enhance its timekeeping instruments with significant differentiation features that are recognized and highly appreciated by connoisseurs. In the case of the Spiromax® spring, the objectives of this innovation philosophy are yet again to further improve the rate accuracy and stability of the mechanical watches crafted by Patek Philippe and to enhance their longevity and long-term value. Further tests will be conducted in the Geneva workshops before the novel Spiromax® spring is introduced as the standard for all regularly produced movements. However, a second strictly limited edition of watches will be presented within the scope of the “Patek Philippe Advanced Research” concept launched in 2005, this time with Spiromax® springs. Intended for collectors and aficionados of technical rarities, it is scheduled to debut in late March at Baselworld 2006. The Patek Philippe Spiromax® spring at a glance · Produced by deep reactive ion etching (DRIE) · Concentric development thanks to patented geometry (Patek Philippe curve) for improved isochronism despite flat topology · Antimagnetic · Temperature compensation based on material properties · Integral stud attachment end (Patek Philippe patent) · Integral self-centering balance staff collet (Patek Philippe patent) · No thermal or mechanical deformation at attachment points, contrary to conventional springs · More homogeneous material structure than Invar alloys · Less internal friction and greater elasticity than Invar alloys · Insensitive to minor shocks · Reduced sensitivity to centrifugal and gravitational forces because the Spiromax® is three times lighter than conventional springs · No degradation of rate accuracy as a result of repetitive minor shocks in daily use · Complies with NIHS standards on randomized shocks · Fulfills the criteria of the Geneva Seal
  


24

主题

955

帖子

5260

积分

见习表迷

Rank: 1

积分
5260
中介积分:0
专业积分:0
差评积分:0
发表于 2006-2-19 14:30:00 |

提示: 作者被禁止或删除 内容自动屏蔽
  


225

主题

3330

帖子

1万

积分

老表迷

Rank: 2

积分
16503
中介积分:0
专业积分:0
差评积分:0
发表于 2006-3-10 13:15:00 |

以下是引用literal在2006-2-19 10:38:00的发言: Here is the press release of the New Patek Spiromax A year after the launch of the first Swiss lever escapement with a silicon escape wheel (patent application No. EP05006186), Patek Philippe can present a further fundamental innovation in horology: the Spiromax® balance spring made of a silicon-based material. It constitutes an epochal step forward in the constant quest for isochronism in mechanical wristwatches. On the occasion of Baselworld 2006, the Geneva workshops will showcase a watch with a Spiromax® balance spring in a second limited “Patek Philippe Advanced Research” edition. Isochronism is the key to every measurement of time based on any form of vibration – whether it originates from a pendulum, a quartz crystal, or a balance wheel. The greater the regularity of the vibration, the more accurate the rate of the movement. If the source of the vibration is perfect, it is called isochronous (isos is Greek for equal, khronos for time). The isochronism of the classic balance in portable mechanical timepieces has always been the greatest challenge for watchmakers and caliber engineers. The key factors that disrupt isochronism are · the asymmetry of the expansion and contraction phases (“breathing”) of the balance spring · changes of the elasticity of the spring in response to temperature changes, · the influence of magnetic fields · mechanical and thermal material changes at the two spring attachment points · the influence of centrifugal forces and gravity on the balance spring · inadequate balance-wheel poise · the play between the curb pins. Ever since the spiral spring emerged, countless attempts have been made to eliminate its anisochronism. The history of the so-called hairspring is characterized by four milestones: A brief history of the balance spring Ever since Christiaan Huygens was inspired by the Archimedes’ spiral to create a regulating organ for mechanical clocks in 1675, generations of watchmakers have tried to teach the delicate spring to contract and expand at a constant rate. Considerable progress was made in the course of the centuries as it became ever more filigreed and lighter. However, the two following steps are considered the truly epochal ones: In 1795 Abraham-Louis Breguet empirically developed the overcoiled spring that bears his name. Later, Edouard Phillips calculated the geometry of this inwardly bent terminal curve with great precision. In a balance with a spring that develops asymmetrically, non-axial forces occur at the jewel-and-pivot contact points. They disturb the oscillating system and cause anisochronism. By contrast, the overcoil allows the Breguet spring to expand and contract symmetrically (concentrically). The downside is that it requires three times the installation height of a flat spring. However, the thermal problem with spiral springs was not yet solved: Metal alloys tend to expand when heated, and their resilience deteriorates as well. The material becomes softer and the spring loses elasticity. Since the inertia of a balance wheel increases when it expands for thermal reasons and the spring becomes softer (less elastic), the frequency of oscillation changes and isochronism is lost. In 1897, Swiss physicist and Nobel laureate Charles Edouard Guillaume invented an iron-nickel alloy with a particularly small coefficient of thermal expansion; the new metal also exhibited greater elasticity at rising temperatures. He called it INVAR as in invariable. Invar alloys have since been used in numerous applications where the stability of material properties in fluctuating temperature environments is an asset. Today, Invar is still the alloy most frequently used for balance springs. Now, Patek Philippe’s Spiromax® spring is ushering in a new era that takes these developments into a new dimension with a revolutionary material technology and a totally new geometrical approach. A new milestone: the Spiromax® spring by Patek Philippe Spiromax® is a totally new type of balance spring made of a silicon-based material jointly developed with a research institute and other partners in the watchmaking industry within the scope of a confidentiality agreement. Accordingly, information on the new material will be released jointly by all partners in due course. The material itself does not solve the asymmetric development problem of a spiral spring. The distinctive features of the Spiromax® spring are the exclusive geometry of its terminal curve as well as the unique design of the attachment points at both ends of the spring. Patents have been applied for these Patek Philippe inventions. Unlike conventional springs, a Spiromax® spring cannot be terminated with a Phillips curve. Therefore, Patek Philippe’s research department sought an alternative approach and discovered an innovative terminal “curve” design that can be implemented inside the spring’s plane of oscillation. The “Patek Philippe terminal curve” exhibits a prominently thicker region at the outer end, forcing a concentric development upon the Spiromax® spring. This causes the expansion and contraction of the spring to be symmetric relative to its center over the entire plane of oscillation. And because the “Patek Philippe terminal curve” lies within this plane, the Spiromax® spring can be crafted three times thinner than a spring with a Philips or Breguet overcoil, thus facilitating the construction of ultra-thin movements. The Spiromax® spring exhibits further important design features. In the center, it has an integral balance staff collet, and the outer end has an integral stud attachment geometry which precisely defines the active length of the spring. Both attachment points are the subject of two further patents. In conventional springs, the inner end is attached to the collet by soldering, brazing, or clamping. This causes spring deformations at the attachment ends due to severe mechanical compression or thermal expansion, necessitating extra adjustment work. The balance staff attachment of the Spiromax® spring is a rigid triangular outer frame that functions as a holder for an inner triangle whose sides have been made bendable and elastic by deliberate material thinning. They act like a three-jaw chuck that automatically centers itself on and tightly grips the balance staff. The rigid frame of the balance staff collet assures the optimized alignment of the inside end of the spring. The specially shaped outer end of the Spiromax® spring engages with the corresponding cavity of the spring stud. This is a patented, proprietary design. Both the integral balance staff collet and the integral stud attachment end of the Spiromax® spring were developed in-house and patents have been applied for by Patek Philippe. With its paradigmatic Spiromax® spring, Patek Philippe has created an oscillating element that unites several decisive advantages. The active length of the Spiromax® spring does not need to be painstakingly adjusted for each individual movement. The Spiromax® spring vibrates with ideal concentricity even without an overcoil. It is designed to be isochronous regardless of the temperature, the orientation of the movement, or the presence of magnetic fields. Spiromax® springs: consistently identical quality As is the case with the silicon escape wheel, the Spiromax® spring is manufactured with the Deep Reactive Ion Etching (DRIE) process described in the annex. The material exhibits a contiguously homogeneous monocrystalline structure and can be machined to tolerances in the micrometer range. Accordingly, all Spiromax® springs are of consistent, extremely high quality, a fact reflected by the remarkable rate accuracy of movements equipped with them. The revolutionary Spiromax® spring asserts the innovative thrust at Patek Philippe The Spiromax® spring expresses the systematic innovation policy pursued by the manufacture in Geneva. With its strong commitment to research and development, Patek Philippe stands at the very forefront of horological exploration. At the same time, the company systematically leverages its know-how to preserve its independence and to enhance its timekeeping instruments with significant differentiation features that are recognized and highly appreciated by connoisseurs. In the case of the Spiromax® spring, the objectives of this innovation philosophy are yet again to further improve the rate accuracy and stability of the mechanical watches crafted by Patek Philippe and to enhance their longevity and long-term value. Further tests will be conducted in the Geneva workshops before the novel Spiromax® spring is introduced as the standard for all regularly produced movements. However, a second strictly limited edition of watches will be presented within the scope of the “Patek Philippe Advanced Research” concept launched in 2005, this time with Spiromax® springs. Intended for collectors and aficionados of technical rarities, it is scheduled to debut in late March at Baselworld 2006. The Patek Philippe Spiromax® spring at a glance · Produced by deep reactive ion etching (DRIE) · Concentric development thanks to patented geometry (Patek Philippe curve) for improved isochronism despite flat topology · Antimagnetic · Temperature compensation based on material properties · Integral stud attachment end (Patek Philippe patent) · Integral self-centering balance staff collet (Patek Philippe patent) · No thermal or mechanical deformation at attachment points, contrary to conventional springs · More homogeneous material structure than Invar alloys · Less internal friction and greater elasticity than Invar alloys · Insensitive to minor shocks · Reduced sensitivity to centrifugal and gravitational forces because the Spiromax® is three times lighter than conventional springs · No degradation of rate accuracy as a result of repetitive minor shocks in daily use · Complies with NIHS standards on randomized shocks · Fulfills the criteria of the Geneva Seal

我来译文

Spiromax®别于常规的游丝设计,其不能以菲利蒲斯弧线模式作为末端。百达翡丽研究部为此研制替代方案,最后成功找出一个能融入摆动面上的革新末端弧线设计,尊称之为「百达翡丽末端弧线」,特色在于宝玑式游丝的外端较厚,迫使Spiromax®游丝同心移动,让游丝在整个摆动面上扩张及收缩时能朝着同一中心出发,有规律及均衡地活动。有鉴「百达翡丽末端弧线」位处摆动面同一水平以内,Spiromax®游丝所占的空间因而大幅减少,较菲利蒲斯或宝玑双层盘绕游丝少于三倍,大利超薄机芯的建构及发展。

Spiromax®游丝展现多项设计特色。游丝的内部中心设有一个连体摆轮杆底座,外端则是一个连体并拥有独特几何形状的连接短栓,能准确界定游丝的有效长度。百达翡丽已为两项连接点设计申请专利。

  


13

主题

661

帖子

9015

积分

见习表迷

P党

Rank: 1

积分
9015
中介积分:0
专业积分:0
差评积分:0
发表于 2006-3-10 14:01:00 |


估计会用在哪款表上???

  


16

主题

1135

帖子

1万

积分

老表迷

Rank: 2

积分
14061
中介积分:0
专业积分:0
差评积分:0
发表于 2006-3-10 14:13:00 |


楼上的(7楼)好厉害呀…

请全译啊……

  


225

主题

3330

帖子

1万

积分

老表迷

Rank: 2

积分
16503
中介积分:0
专业积分:0
差评积分:0
发表于 2006-3-10 16:15:00 |

以下是引用regit在2006-3-10 14:13:00的发言:

楼上的(7楼)好厉害呀…

请全译啊……

补充一点:

Spiromax游丝资料

• 游丝经深活性离子蚀刻工序(DRIE)制成 • 具抗磁特性 • 物料特质能抵销温差带来的变化 • 连体短栓连接末端(百达翡丽专利) • 连体朝中摆轮杆底座(百达翡丽专利) • 有别于一般游丝,连接点部份并不出现因机械工序或遇热而变形的情况 • 物料同构型较INVAR合金为高 • 相对INVAR合金而言,内部摩擦力较少,弹性较大 • 不受轻微冲击影响 • 重量较一般游丝轻出三倍,因离心力或地心吸力所而受到的影响相对减少 • 不会因日常佩戴时反复的轻微撞击而影响速率的准确性 • 经随机冲击测试,证实符合NIHS标准 • 符合「日内瓦优质印章」法则要求

  


10

主题

1027

帖子

6532

积分

见习表迷

Rank: 1

积分
6532
中介积分:0
专业积分:0
差评积分:0
发表于 2006-3-10 18:01:00 |

强物,等待见见实物
  

名表论坛手机商城

名表论坛微商店

名表论坛订阅号
粤公网安备 44190002000260号 增值电信业务经营许可证:粤B2-20110198 粤ICP备05130796号

在线会员 - 2325 人在线 - 最高记录是 660232017-3-5.

可信网站

QQ|手机版|名表论坛

GMT+8, 2024-3-28 19:05 , Processed in 0.093600 second(s), 19 queries , Gzip On, MemCache On.

Powered by Discuz! X3.4

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表